Showing 117–120 of 141 results

  • Placeholder

    Preventing Li Ion Battery Failures From a Manufacturing and Design Perspective

    How can you be proactive and make sure your cell supplier is the right one and you don’t end up with thermal events and field failures? Is it enough to qualify a cell manufacturer according to industry standards? The answer is that the majority of compliance based testing is related to abuse tolerance. However, the vast majority of field failures do not occur under abuse scenarios, but happen under normal operating conditions due to manufacturing flaws or design and system tolerance issues that cause internal shorts. In this webinar, you will learn about common lithium ion battery failure modes and how to be proactive in preventing these.

    This webinar will focus on the following key topics:

    • Gain an understanding of lithium ion battery failure mechanisms and the pathway to thermal events
    • Learn how cell design impacts battery safety and reliability
    • Learn the basic steps in a lithium ion cell manufacturing process, and how the process controls affect safety and reliability
    • Come away with a checklist to qualify your cell manufacturer

    Presenter
    Vidyu Challa – Technical Director at DfR Solutions

    Vidyu Challa is Technical Director at DfR Solutions where she works on battery reliability and safety issues. Dr. Challa helps customers with their battery challenges including design reviews, manufacturing audits and supplier qualification. She obtained a PhD from CALCE Electronic Products and Systems Center at the
    University of Maryland. She has broad based expertise that includes engineering technology start-up experience, product development, R&D, and business development. Dr. Challa has published her work in journals, presented at conferences and written blog articles.

    Buy Now
  • Placeholder

    Avoid Battery Explosions and Fires – With Right Data and Better Designs

    Modern Li Ion batteries contain hazardous chemicals and heat up during use – this combination always has the potential to cause fires and explosions. This presentation will focus on improving the understanding of how such incidents occur, what can be done to avoid them and how the risk can be minimized during early stage design.

    The solution lies in knowledge of the heat generation rate during normal use, and information about safe boundaries such as temperature, discharge rate & overcharge in realistic situations that represent actual conditions of use. Data from commercial batteries of different types, including videos of batteries undergoing thermal runaway, will be used to illustrate these points.

    A relatively new technique will also be discussed with data, which allows total heat output during discharge to be measured on-line and this can be used both for design and battery modelling. Examples of the data will be provided.

    This webinar will focus on the following key topics:

    • Why battery fires and explosions occur
    • How to design safer batteries through understanding of heat generation
    • Video evidence of batteries under explosive conditions
    • How better thermal management systems can be designed – based on heat measurement from isothermal calorimetry
    • Laboratory instruments suitable for testing and data generation

    Presenter
    Dr. Jasbir Singh – Managing Director at Hazard Evaluation Laboratory

    Jasbir is a chemical engineer specializing in thermal hazards and calorimetry, traditionally for the chemical industry but now increasingly involved in battery safety, especially Li-ion EV and related types.

    A graduate of Imperial College (London), where he undertook PhD into combustion and explosions, his experience includes many years in process design for the chemical and petrochemical industries. He is currently developing test methods and instruments for use in design of battery thermal management systems.

    Buy Now
  • Placeholder

    Electrochemical Impedance Spectroscopy and Its Application to Battery Analysis

    Electrochemical Impedance Spectroscopy (EIS) is a well-established experimental technique that has applications in coatings, corrosion, sensors, electrochemical double layer capacitors, batteries among others. The power of EIS partly comes from its ability to access a very wide range of frequencies (typically from MHz to μHz). For batteries, parameters such as the internal resistance, electrode surface capacitance and leakage are accessible at different frequencies across the spectrum. This allows EIS to gather all the relevant information with a single measurement. In this webinar, we will briefly introduce EIS and cover its application to batteries. We will talk about how to analyze typical data and how to gather the relevant information. We will further talk about available instrumentation and their limitations.

    This webinar will focus on the following key topics:

    • What is impedance spectroscopy?
    • What can impedance spectroscopy do for Battery analysis?
    • How can capacitance, internal resistance and leakage be determined using EIS?
    • What are the instrumental requirements and limits?

    Presenter

    Chris Beasley – Gamry Instruments

    Chris Beasley received a BS in Chemistry from Kutztown University in 2000 and got a PhD in electrochemistry from University of North Carolina at Chapel Hill in 2010. His doctoral dissertation was on using redox-active nanoparticles as supercapacitors. Chris joined Gamry Instruments in 2010.

    Buy Now
  • Placeholder

    The Potential Impact of a New U.S. Administration on Electric and Hybrid Vehicles

    The impact of the election upon government policy & the automotive industry is complicated and unclear. Fuel economy regulations are in place through Model Year 2021. We will explore the potential impacts on Model Years 2022-25 & beyond including the Midterm Review & the California Zero Emission Vehicle regulations which become more stringent in 2018.

    The strategies of the global automakers will be discussed including Volkswagen (as it attempts to recover from its diesel scandal) & the Detroit Three automakers that are focusing their expansion on markets outside North America. The role of China will also be assessed.

    Technology improvements and their implication upon cost will also be discussed, as will the full impact of electrification (including 48 volt technology) on the vehicle fleet.

    This webinar will focus on the following key topics:

    • Potential Legislative & Regulatory Changes Affecting Manufacturers and Consumers
    • Potential Responses by Industry & the New Administration to EPA Regulation for Model Years 2022-2025
    • Potential Responses from NHTSA Which May Still Rule on 2022-2025 Period
    • Reaction From California & the Impact of Its Zero Emission Vehicle Policies
    • Impact of Automaker Strategies Which are Global
    • Impact of Business & Technological Trends

    Presenter
    Alan Baum – Principal, Baum & Associates

    Alan Baum formed Baum & Associates in August 2009. The company produces a detailed sales forecast and product life cycle for hybrid and electric vehicles. Baum has experience analyzing the impact of alternative fuel vehicles as well as advanced technologies in internal combustion engines that provide improved fuel economy. Since the 1980s, Baum has produced an automotive production forecast and detailed analysis of the automotive market. He has experience in the area of fuel economy and emissions regulation, the impact of fuel prices, & the market for hybrid and electric vehicles.

    Buy Now