Showing 45–48 of 120 results
-

Battery Analytics Tutorial Course 2/3: Data Capture and Trend Reporting
This one-hour webinar is Part 2 of a 3-part series. Battery management systems take large amounts of sensor data readings on a continual basis as part of their functionality. Battery analytics involves leveraging battery performance data for tasks such as identifying issues that can reduce battery life, flagging behavior that can negatively impact energy storage system performance, and predicting remaining cell and pack life.
This webinar will focus on the following key topics:
• Sensor data capture, aggregation and manipulation into performance reports
• Real-life examples will be shared, where aggregated historical data was analyzed and anomalous behaviors were identified
• Also shared will be the inspections and testing of the pack to identify the cause of the anomalous behavior, and the discovery and resolution of the problems that caused the anomaliesPresenter
Michael Worry – CEO at Nuvation EnergyMichael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now -

Battery Analytics Tutorial Course 1/3: Battery Analytics and the Role of the BMS
This one-hour course will explore how various energy storage industry experts define the term “battery analytics.” It will also examine how the battery management system (BMS) is used to control the battery and provide real-time performance reporting, the lowest level of battery analytics.
This webinar will focus on the following key topics:
• The different types of battery analytics
• How a BMS works and why it is the most basic component of any battery analytics platform
• Real-time performance algorithms as the lowest level of analyticsPresenter
Michael Worry – CEO at Nuvation EnergyMichael Worry founded Nuvation in 1997 and has grown the company over 21 years into a thriving electronic products and engineering services firm with offices in Sunnyvale, California and Waterloo, Ontario Canada. He is the CEO of Nuvation Energy, a provider of battery management systems and engineering services for large-scale energy storage systems.
Buy Now -

Battery Design Optimization Using Cell Cooling Coefficient
Lithium-ion cells and battery packs are not designed to maximize the performance of thermal management systems. As a result, every cell in use is performing sub optimally, and is degrading needlessly fast. The root cause of the problem is the lack of information surrounding the thermal performance of lithium-ion cells. Cell Cooling Coefficients (CCCs) have been developed to quantify the cell thermal performance. They can immediately tell the user exactly how a cell will behave in a battery pack, vital information for the design of any thermal management system. They can also be used to inform redesign, both at the cell level and at the battery pack level.
This webinar will focus on the following key topics:
• Battery heat generation: why, and why is it complex
• Thermal management in battery packs
• The problems with battery design: energy density above all else
• Cell Cooling Coefficient as a universal metric
• Using the Cell Cooling Coefficient to evaluate battery design and propose beneficial redesignsPresenter
Alastair Hales – Research Associate, Imperial College LondonAlastair earned a PhD in Mechanical Engineering from the University of Bristol in 2016. Prior to joining Imperial College London in 2018, Alastair worked for SUEZ Advanced Solutions UK, designing equipment closely linked to his PhD topic, and as a Research Associate at Queen Mary University of London. Alastair’s existing work is focused around the thermal management and thermal effects of lithium-ion cells. Alastair led the work introducing the Cell Cooling Coefficient as a universal metric to quantify battery thermal performance. He is now building upon this research to develop capability for cell design optimization.
Buy Now -

Experimental Investigation of Cascading Failure in Lithium Ion Cell Arrays – Impact of Cathode Chemistry
In lithium ion arrays, thermal runaway may propagate from a failing cell to neighboring cells and grow into a large-scale fire in a phenomenon referred to as cascading failure. A new experimental setup was developed to investigate cascading failure using 12 cell arrays constructed from cells of 18650 form factor. Thermal runaway was initiated in one cell using an electric heater and observed to propagate through the array using temperature sensors. Cascading failure was studied in nitrogen or air environment to elucidate the impact of combustion. The cell temperature allowed calculation of row-to-row propagation speed in arrays of different cathode chemistries. The yields of oxygen, carbon monoxide, carbon dioxide, total hydrocarbons and hydrogen were measured; corresponding fire hazards were assessed.
This webinar will focus on the following key topics:
• Thermal runaway propagation
• Thermal runaway hazards
• Failure dynamics
• Flammability and toxicity
• Failure Mitigation and suppressionPresenter
Ahmed Said – Postdoc Fellow, Worcester Polytechnic InstituteAhmed Said is a Postdoctoral Fellow at the Department of Fire Protection Engineering at Worcester Polytechnic Institute (WPI). He is broadly interested in problems related to fire, combustion, and thermal sciences. He is currently engaged in several projects: fire safety of lithium ion batteries, wildland fires, and fire spread on façade systems. He earned his PhD in Mechanical Engineering in 2020 from the University of Maryland, College Park. He also received his BS and MSc in Mechanical Engineering from Cairo University.
Buy Now
