Showing 53–56 of 117 results

  • Placeholder

    Battery Design Optimization Using Cell Cooling Coefficient

    Lithium-ion cells and battery packs are not designed to maximize the performance of thermal management systems. As a result, every cell in use is performing sub optimally, and is degrading needlessly fast. The root cause of the problem is the lack of information surrounding the thermal performance of lithium-ion cells. Cell Cooling Coefficients (CCCs) have been developed to quantify the cell thermal performance. They can immediately tell the user exactly how a cell will behave in a battery pack, vital information for the design of any thermal management system. They can also be used to inform redesign, both at the cell level and at the battery pack level.

    This webinar will focus on the following key topics:

    • Battery heat generation: why, and why is it complex
    • Thermal management in battery packs
    • The problems with battery design: energy density above all else
    • Cell Cooling Coefficient as a universal metric
    • Using the Cell Cooling Coefficient to evaluate battery design and propose beneficial redesigns

    Presenter
    Alastair Hales – Research Associate, Imperial College London

    Alastair earned a PhD in Mechanical Engineering from the University of Bristol in 2016. Prior to joining Imperial College London in 2018, Alastair worked for SUEZ Advanced Solutions UK, designing equipment closely linked to his PhD topic, and as a Research Associate at Queen Mary University of London. Alastair’s existing work is focused around the thermal management and thermal effects of lithium-ion cells. Alastair led the work introducing the Cell Cooling Coefficient as a universal metric to quantify battery thermal performance. He is now building upon this research to develop capability for cell design optimization.

    Buy Now
  • Placeholder

    Experimental Investigation of Cascading Failure in Lithium Ion Cell Arrays – Impact of Cathode Chemistry

    In lithium ion arrays, thermal runaway may propagate from a failing cell to neighboring cells and grow into a large-scale fire in a phenomenon referred to as cascading failure. A new experimental setup was developed to investigate cascading failure using 12 cell arrays constructed from cells of 18650 form factor. Thermal runaway was initiated in one cell using an electric heater and observed to propagate through the array using temperature sensors. Cascading failure was studied in nitrogen or air environment to elucidate the impact of combustion. The cell temperature allowed calculation of row-to-row propagation speed in arrays of different cathode chemistries. The yields of oxygen, carbon monoxide, carbon dioxide, total hydrocarbons and hydrogen were measured; corresponding fire hazards were assessed.

    This webinar will focus on the following key topics:

    • Thermal runaway propagation
    • Thermal runaway hazards
    • Failure dynamics
    • Flammability and toxicity
    • Failure Mitigation and suppression

    Presenter
    Ahmed Said – Postdoc Fellow, Worcester Polytechnic Institute

    Ahmed Said is a Postdoctoral Fellow at the Department of Fire Protection Engineering at Worcester Polytechnic Institute (WPI). He is broadly interested in problems related to fire, combustion, and thermal sciences. He is currently engaged in several projects: fire safety of lithium ion batteries, wildland fires, and fire spread on façade systems. He earned his PhD in Mechanical Engineering in 2020 from the University of Maryland, College Park. He also received his BS and MSc in Mechanical Engineering from Cairo University.

    Buy Now
  • Placeholder

    Battery Modeling – Electrical and Thermal Models

    Energy storage systems are widely used in many applications where the integration of such systems requires a proper design and sizing. To ensure a reliable design and operation of these systems for the above-mentioned applications, a system management including battery management and thermal management is indispensable. Such kind of system-level supervisors are based on efficient modeling approaches that include electro-thermal models. Electro-thermal model includes different models with different precision, where the higher model accuracy requires a higher computational effort and cost. In this webinar, different modeling methods based on the latest findings are explained and reviewed.

    This webinar will focus on the following key topics:

    • Battery thermal solutions: existing systems and trends
    • Electrical behavior modeling
    • Thermal behavior modeling
    • 1D thermal model
    • 3D thermal model

    Presenter
    Aymen Souissi – Thermal Management Expert at Avesta Battery & Energy Engineering (ABEE)

    Aymen Souissi is a thermal Management Expert at Avesta Battery & Energy Engineering (ABEE), where he is working on different European projects on battery modeling and thermal management. Aymen is a mechanical engineer with a master’s degree in the fields of thermo-fluid dynamics and automotive technology from the University of Stuttgart in Germany. Prior to joining ABEE, he worked as thermal management engineer on different industrial projects at Bertrandt AG, where he was deeply involved in the development of battery systems.

    Buy Now
  • Placeholder

    Increasing Power Density for Military and Aerospace Applications

    Laminated bus bars and cold plates are commonplace in a wide range of defense and space programs designed by Mersen‘s Rochester, NY plant, registered under ITAR with the U.S. State Department’s Directorate of Defense Trade Controls (DDTC).

    Mersen’s laminated bus bars are engineered for optimal increased capacitance, minimal voltage drop and lower inductance ideal for SiC. All applications are tailored to a system’s environmental, physical, and electrical needs.

    Mersen’s cold plates are designed to withstand harsh environment and provide a reliable cooling solution to meet application needs. The wide range of engineered solutions include air cooled heat sinks, embedded heat pipe assemblies to high performance liquid cold plates. These techniques come highly desired for removing heat from any diode, power amplifier or SiC device.

    This webinar will focus on the following key topics:

    • Bus Bar Solutions
    • Cooling Solutions

    Presenter
    Philippe Roussel – VP of Global Strategic Marketing at Mersen

    Philippe Roussel, Ph.D, graduated from the University of Lyon in Electronics and Microelectronics. He was granted a Ph.D in Integrated Electronics Systems from the Applied Sciences National Institute (INSA) in Lyon. He joined Mersen in 2014 as VP of Global Strategic Marketing for power electronics products line-up.

    Mersen is a proud sponsor of this event.

    Buy Now