Showing 93–96 of 101 results

  • Placeholder

    Electrode Damage Characterization in Li-Ion Batteries Using Raman Spectroscopy

    While Li-Ion battery technology has continually advanced to provide cells that are smaller and more powerful, compromised safety concerns due to physical damage are always present. Physical damage to a Li-Ion battery can significantly affect its operational performance, causing accelerated degradation and capacity fade. Damage to electrodes and removal of active material lead to microstructural changes in electrode material and unbalanced current distribution, causing polarization in cells. This work focuses on characterizing the effects of partial nail penetrations on electrodes in cells that continue cycling after being damaged by using Raman spectroscopy and incremental capacity analysis. This helps to determine the type and extent of damage to the electrodes over the course of their abbreviated lifetime.

    This webinar will focus on the following key topics:

    • Dynamic impact testing of prismatic Li-Ion cells
    • Raman spectroscopy analysis for anode damage characterization
    • Increased polarization due to unbalanced current distribution
    • Accelerated degradation caused by physical damage
    • Incremental capacity analysis to determine mechanisms of aging

    Presenter
    Casey Jones – Ph.D. Candidate at Purdue University

    Casey Jones is a PhD student in the School of Aeronautics and Astronautics at Purdue University, where he works in the Interfacial Multiphysics Laboratory for Dr. Vikas Tomar. His research focuses on destructive testing of Li-ion batteries and the characterization of the effects on cell operation and is funded by the Office of Naval Research. Prior to studying at Purdue he served in the US Navy as a nuclear electronics technician aboard a fast-attack submarine based in Pearl Harbor, and received his BS in Mechanical Engineering from the University of Hawai’i at Manoa.

    Buy Now
  • Placeholder

    IP Landscape, Strategies & Protection for Li-Ion Battery Solid-State Electrolytes and Silicon-Based Anodes

    The audience will learn about recent key inventions in the areas of solid electrolytes and silicon anodes for Li-ion batteries that constitute the state of the art. Exemplified by a look at two new-comers (startups) and two incumbents, attendees will further learn about how to approach IP strategy & protection for their R&D programs.

    This webinar will focus on the following key topics:

    • IP landscape, strategies & protection
    • Solid-state electrolytes for Li-ion batteries
    • Silicon-based anodes

    Presenters
    Howard Lim – Associate Attorney, Fenwick & West LLP
    Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Howard represents technology-based clients in patent litigation matters and postgrant proceedings, such as inter partes reviews. He has technical experience in the area of lithium-ion batteries, electric vehicles, semiconductors, semiconductor manufacturing equipment, and LCD and OLED display technologies. Prior to becoming a lawyer, Howard had a substantial career in the lithium-ion battery industry working for Panasonic and Sanyo Electric Company developing new products in the areas of electric vehicle and energy storage technologies.

    Pirmin is co-founder and CEO of b-science.net, a battery innovation & patent monitoring service that is based on a novel machine learning approach. He obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009. Thereafter, he was a JSPS Foreign Fellow at the University of Tokyo (Japan). From 2010 to 2016, while working at a major battery materials manufacturer in Switzerland, he was a coinventor of 7 patent families related to lithium-ion batteries. He holds the credential Stanford Certified Project Manager (SCPM) and has co-authored scientific publications with more than 1,600 citations.

    Buy Now
  • Placeholder

    Solid-State Batteries – The Key Enabling Technology in Advanced Electric Vehicles

    The ‘EV Everywhere Grand Challenge’ has led to extensive research and development of battery technologies with high energy density. To date, state-of-the-art Li-ion batteries (SOA LIBs) based on alkali metal ion intercalation cathodes and anodes have been widely adopted in plug-in hybrid and niche high performance electric vehicles. However, concern with the ultimate limits of SOA LIBs related to their energy density, weight and safety suggests the need for alternatives over the long term. Solid-state batteries (SSBs) have been recognized as an ideal solution that can enable energy densities beyond those of SOA LIBs by utilizing Li metal anode and high voltage cathode, while delivering long cycle life and improved safety. As the key component of SSB, solid-state electrolyte (SSE) replaces the porous separator/ liquid electrolyte to act as a physical barrier and mechanically suppress the formation and penetration of Li dendrites. However, successful development and commercialization of SSBs requires fundamental research related to enhancing the SSE ionic conductivity, stabilizing the     electrolyte/ electrode interfaces, cell and pack manufacturing methods, development of battery management systems, and efficient battery pack designs. In this webinar, the practices and principles that have been proposed for dealing with core problems related to SSBs as well as future research avenues that will encourage the adoption of SSBs in real application will be discussed.

    This webinar will focus on the following key topics:

    • The microstructure role and SSE composition on the Li+ conduction behavior
    • Design and development of an effective electrode-electrolyte interface in SSBs
    • Mechanistic origins of Li dendrite growth in SSEs and approaches to mitigate the dendrite penetration
    • Manufacturing challenges related to mass production of SSBs

    Presenter
    Asma Sharafi – Research Engineer at Ford Motor Company

    Asma Sharafi is a Research Engineer working in Electrification Subsystem and Power Supply Department at Ford Motor Company. Prior to joining Ford, she completed her Ph.D. at the University of Michigan in Mechanical Engineering. Her primary focus is development of pioneering strategies to improve the durability and increase the energy density of batteries for their implementation in electric vehicles.

    Buy Now
  • Placeholder

    The IP Landscape of Silicon and Lithium Metal Anodes in Lithium-Ion Batteries

    This joint presentation by technology law firm Fenwick and energy storage patent & innovation monitoring service B-Science.net will discuss the technical evolution of high energy negative electrodes based on silicon and lithium metal, and the intellectual property protection sought to cover these advancements. The presentation will focus on emerging technical requirements and patenting activity for cells with solid or semi-solid electrolytes.

    This webinar will focus on the following key topics:

    • Silicon-based and lithium metal negative electrodes for lithium-ion batteries
    • Interface aspects with liquid, semi-solid and solid electrolytes
    • Technology evolution and IP protection

    Presenters
    Howard Lim – Patent Attorney, Fenwick & West LLP
    Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Howard L. Lim is a patent lawyer representing technology-based clients in patent litigation matters and post-grant proceedings, such as inter partes reviews. He works on intellectual property and legal issues related to lithium-ion batteries. Prior to becoming a lawyer, Howard developed lithium-ion batteries at Panasonic and Sanyo Electric Company for electric vehicle and energy storage applications.

    Pirmin Ulmann is co-founder and CEO of b-science.net, a battery innovation & patent monitoring service that is based on a novel machine learning approach. He obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009. Thereafter, he was a JSPS Foreign Fellow at the University of Tokyo (Japan). From 2010 to 2016, while working at a major battery materials manufacturer in Switzerland, he was a co-inventor of 7 patent families related to lithium-ion batteries. He holds the credential Stanford Certified Project Manager (SCPM) and has co-authored scientific publications with more than 1,700 citations.

    Buy Now