Showing 89–92 of 121 results

  • Placeholder

    Energy Storage RTE Tutorial Course 1/3: What is Round Trip Efficiency (RTE)? Why is it Important? How Much Does it Cost?

    In the first of this three-part webinar series, a definition of RTE will be presented along with simple system equations that are important to its understanding, determination and management. RTE for some popular battery systems i.e. Lead Acid, Lithium Ion, Vanadium Redox and Nickel Zinc will be computed as examples, and their variation with common variables such as rate, capacity variability & SOC swing will be discussed. The costs of Round Trip inefficiency can be significant, and are experienced by customers either in higher energy generating capital costs and/or higher operating expenses. The calculation of these higher costs will be reviewed, and there will be a discussion on the key industry variables that influence them. Different geographic and customer markets will be considered.

    This webinar will focus on the following key topics:

    • The Importance of RTE to battery selection decisions
    • How does RTE impact CAPEX and/or OPEX for energy storage
    • How is RTE defined and how can it be derived – comparison of different systems
    • An introduction to ancillary equipment energy losses

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Energy Storage RTE Tutorial Course 2/3: Ampere-Hour (Ah) RTE and Voltage Polarization Energy Losses

    Many aqueous systems have water electrolysis to contend with, and above 70-80% SOC, RTE losses from this competing reaction can be significant. Management of these losses has been evolving for decades, and there are now tried and tested methods mostly related to charging algorithms & partial state of charge (pSOC) cycling. These methods will be reviewed. Relevant for every battery chemistry, Cell Voltage factors, will be separated into eight different components, four each, for the cathode and anode. These will be presented & described. The variables that affect them will be reviewed, including the effects of age & cycling and methods for their ongoing measurement. Techniques to reduce and mitigate polarization will be detailed & possible benefits will be quantified in terms of RTE & cost for different scenarios.

    This webinar will focus on the following key topics:

    • Ah Efficiency losses in aqueous systems
    • Types of Voltage Polarization losses for all systems
    • Strategies and plans for reducing & mitigating efficiency losses
    • Improvement potential for different systems

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Energy Storage RTE Tutorial Course 3/3: Total Battery System RTE – Ranking and Comparison of Different Battery Chemistries

    RTE impacts of HVAC/Ventilation and Inverters will be described. Batteries generate heat, and this must be dissipated by system cooling and/or taken out of the system. Heat generated can be calculated by looking at IR heating and that generated (net) by exothermic reactions. Examples will include LFP, Li-NMC, Lead Acid and Nickel batteries, both when they are fresh, as well as at their end of useful life. The overall ancillary equipment energy usage will be listed for these systems, and a % RTE loss will be calculated for both nominal rate and high rate applications. Commentary will be provided for other systems. RTE will be summarized and ranked for most energy storage battery chemistries including ZA, NaS, LiS, Saltwater, Liquid Metal, Zinc Bromine and Fuel Cells.

    This webinar will focus on the following key topics:

    • RTE impacts of Inverters and HVAC
    • RTE impacts for ancillary equipment for different systems
    • RTE numbers for most battery systems being considered for energy storage

    Presenter
    Dr. Halle Cheeseman – Founder/President at Energy Blues LLC

    Dr. Halle Cheeseman earned a PhD in Electrochemistry & Corrosion from the University of Nottingham in UK, graduating in 1985. She has held several executive positions in the battery industry over the past 32 years, including Sr. VP of R&D at Spectrum Brands and VP of R&D at Exide Technologies. Her specific battery experience includes Lithium Ion, Zinc Air, Nickel Metal Hydride, Nickel Iron, Alkaline and Lead Acid, focusing on Consumer, Industrial, Automotive & Renewable Energy applications. In July 2017, Dr. Cheeseman founded Energy Blues LLC, an energy storage consulting cooperative comprising 20+ subject matter experts.

    Buy Now
  • Placeholder

    Battery EIS Tutorial Course 1/4: Electrochemical Impedance Spectroscopy (EIS) – Fundamentals and Principles

    Electrochemical Impedance Spectroscopy (EIS) will be described from a theoretical point of view. Various representations (Nyquist, Bode, etc.) of impedance data will be introduced. Guidelines on how to interpret the data will also be provided.

    This webinar will focus on the following key topics:

    • Definition of impedance
    • Various representations
    • Impedance interpretation: the deductive and the inductive way

    Presenter
    Dr. Nicolas Murer – Product Manager and Applications Engineer at Bio-Logic SAS, France

    Dr. Nicolas Murer is a Product Manager and Applications Engineer at Bio-Logic SAS, France, which designs and manufactures high performance research grade instrumentation and software : potentiostats/galvanostats with built-in Electrochemical Impedance Spectroscopy (EIS), Battery Cyclers, Frequency Response Analyzers for materials analysis, and scanning probe electrochemical workstations. Nicolas received his engineering diploma from Polytechnic Institute of Grenoble in electrochemistry and materials in 2003. He then received his Ph.D. at Université de Bourgogne in 2008. Prior to joining Bio-Logic, he was a post-doctorate at the Ohio State University, Columbus, Ohio (USA).

    Buy Now