Showing 41–44 of 82 results

  • Placeholder

    Experimental Investigation of Cascading Failure in Lithium Ion Cell Arrays – Impact of Cathode Chemistry

    In lithium ion arrays, thermal runaway may propagate from a failing cell to neighboring cells and grow into a large-scale fire in a phenomenon referred to as cascading failure. A new experimental setup was developed to investigate cascading failure using 12 cell arrays constructed from cells of 18650 form factor. Thermal runaway was initiated in one cell using an electric heater and observed to propagate through the array using temperature sensors. Cascading failure was studied in nitrogen or air environment to elucidate the impact of combustion. The cell temperature allowed calculation of row-to-row propagation speed in arrays of different cathode chemistries. The yields of oxygen, carbon monoxide, carbon dioxide, total hydrocarbons and hydrogen were measured; corresponding fire hazards were assessed.

    This webinar will focus on the following key topics:

    • Thermal runaway propagation
    • Thermal runaway hazards
    • Failure dynamics
    • Flammability and toxicity
    • Failure Mitigation and suppression

    Presenter
    Ahmed Said – Postdoc Fellow, Worcester Polytechnic Institute

    Ahmed Said is a Postdoctoral Fellow at the Department of Fire Protection Engineering at Worcester Polytechnic Institute (WPI). He is broadly interested in problems related to fire, combustion, and thermal sciences. He is currently engaged in several projects: fire safety of lithium ion batteries, wildland fires, and fire spread on façade systems. He earned his PhD in Mechanical Engineering in 2020 from the University of Maryland, College Park. He also received his BS and MSc in Mechanical Engineering from Cairo University.

    Buy Now
  • Placeholder

    Electrolyte Flow Control to Reduce Dendrite and SEI Growth in Lithium Metal Batteries

    Dendrite growth in lithium metal batteries often leads to accelerated failure. SEI growth, breakage under excessive stress around dendrite tips, and re-growth on freshly exposed Li-surfaces leads to rapid capacity deterioration. Till date, a tough, mechanically stable SEI has been thought of as a necessity to prevent further SEI growth and to suppress dendrites. In this presentation, we will demonstrate that electrolyte flow can possibly eliminate dendrite growth, and also reduce SEI growth significantly, thus increasing stability and coulombic efficiency. The required electrolyte flow rates are low enough to be practically achieved by microfluidic pumping techniques.

    This webinar will focus on the following key topics:

    • Creeping normal electrolyte flow can eliminate dendrite growth
    • Creeping normal electrolyte flow increases the columbic efficiency and reduces SEI growth
    • Creeping parallel electrolyte flow significantly reduces dendrite growth
    • A mechanically stable tough SEI layer is not a necessity for stable dendrite free electroplating
    • Required flow rates may be achieved practically

    Presenter

    Mihir Parekh – PhD Candidate, Penn State University

    Mihir got his Bachelor and Master of Technology degrees (B. Tech and M. Tech) in Energy Science and Engineering from Department of Energy Science and Engineering at IIT Bombay, India. Currently he is a PhD candidate in Mechanical Engineering at Penn State University in Dr. Christopher Rahn’s group. He is studying the effect of electrolyte flow on dendrite and SEI growth in lithium metal batteries. During his undergrad, he has worked on Vanadium Redox flow batteries, and his Master’s thesis was on designing a heat exchanger for cooling a nuclear reactor spent fuel pool.

    Buy Now
  • Placeholder

    Calorimetric Measurements of Lithium-Ion Batteries Under Use and Abuse

    This presentation will describe two main types of calorimetric techniques that can be used to carry out performance and safety testing on batteries. These are isothermal calorimetry and adiabatic calorimetry.

    The first half of the presentation will introduce isothermal calorimetry; the various types of instruments, the method of operation, and examples of data that can be obtained. The second half of the presentation will cover battery testing methods for the ARC adiabatic calorimeter system. The theoretical background of the test method will be described, and recommended practice for various types of testing will be discussed.

    The presentation will also mention complementary test methods that can be integrated with calorimetry to provide even more useful analysis.

    This webinar will focus on the following key topics:

    • Principles of isothermal and adiabatic calorimetry for batteries
    • Advantages and limitations of these two methods
    • Discussion of applications and results
    • Recommended testing practices

    Presenter
    Danny Montgomery – Technical Performance Manager at THT

    Danny Montgomery has worked in Thermal Hazard Technology UK for 11 years. He joined the company after graduating from Southampton University with a master’s degree in physics. His current position is Technical Performance Manager. He manages THT’s test lab and continues to expand THT’s testing capability into new areas of interest for a range of high-profile clients. As well as managing the lab, Danny is involved with technical support, installation and training for THT’s calorimeter systems. He has provided training for major international companies such as Panasonic, LG, Samsung, BMW and Underwriters Laboratory.

    Thermal Hazard Technology (THT) is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Potentiostat and Battery Analyzer Design Fundamentals Explained for Users

    Potentiostats and Battery Analyzers have a critical role in evaluating how energy devices will perform. Understanding the basic design structure of instrumentation provides tools to users for informed decisions on experiments, analysis and products.

    AMETEK presents here on the different core functions on how signals are generated, cells are controlled and responses are measured.

    This content is presented from the perspective of a user and by the innovator of the digital potentiostat, Princeton Applied Research. Peek under the cover of the instrument that you rely on for your research and diagnostic programs. Most of the content will be general, so users of all instruments can find value. Learn the difference in your DACs and ADCs!

    This webinar will focus on the following key topics:

    • Detail how potentiostats create signals, control cells and measure responses
    • Decode jargon and terminology used in instrument design for users
    • Explain which specifications relate to which functions
    • Show how to take advantage of the capabilities of your system
    • Use AMETEK’s portfolio as an example of different points in price-and-capability

    Presenter
    Rob Sides – Applications Architect at AMETEK

    Rob Sides presents here as part of AMETEK, a global enterprise supporting electrochemical research through its Princeton Applied Research and Solartron Analytical brands. He joined AMETEK after achieving his Ph.D. from University of Florida in 2005, where he authored several original research papers, presentations, invited reviews and book chapters on the fabrication and characterization of Li-ion battery electrodes using DC and EIS-based methods. At AMETEK, Rob has held several roles across different functional groups of Applications, Sales/Marketing and Product Management. His background provides a depth and breadth of experience to present both fundamentals and solutions to the most challenging problems.

    AMETEK is a proud sponsor of this event.

    Buy Now