Showing 69–72 of 84 results

  • Placeholder

    Electrode Damage Characterization in Li-Ion Batteries Using Raman Spectroscopy

    While Li-Ion battery technology has continually advanced to provide cells that are smaller and more powerful, compromised safety concerns due to physical damage are always present. Physical damage to a Li-Ion battery can significantly affect its operational performance, causing accelerated degradation and capacity fade. Damage to electrodes and removal of active material lead to microstructural changes in electrode material and unbalanced current distribution, causing polarization in cells. This work focuses on characterizing the effects of partial nail penetrations on electrodes in cells that continue cycling after being damaged by using Raman spectroscopy and incremental capacity analysis. This helps to determine the type and extent of damage to the electrodes over the course of their abbreviated lifetime.

    This webinar will focus on the following key topics:

    • Dynamic impact testing of prismatic Li-Ion cells
    • Raman spectroscopy analysis for anode damage characterization
    • Increased polarization due to unbalanced current distribution
    • Accelerated degradation caused by physical damage
    • Incremental capacity analysis to determine mechanisms of aging

    Presenter
    Casey Jones – Ph.D. Candidate at Purdue University

    Casey Jones is a PhD student in the School of Aeronautics and Astronautics at Purdue University, where he works in the Interfacial Multiphysics Laboratory for Dr. Vikas Tomar. His research focuses on destructive testing of Li-ion batteries and the characterization of the effects on cell operation and is funded by the Office of Naval Research. Prior to studying at Purdue he served in the US Navy as a nuclear electronics technician aboard a fast-attack submarine based in Pearl Harbor, and received his BS in Mechanical Engineering from the University of Hawai’i at Manoa.

    Buy Now
  • Placeholder

    Low Data Machine Learning for Predicting Lithium-ion Battery Aging

    Meeting the demand for reliable energy storage, this work presents a machine-learning model for precise cycle life prediction in lithium-ion batteries (LIB). It explores battery aging features, utilizes data-driven methods for health assessment, and applies machine learning to predict cycle life. To address data limitations, synthetic data generation is employed, enhancing prediction accuracy. The presentation concludes by demonstrating the practical deployment of the proposed ML model on a battery management system, showcasing its potential impact on power usage efficiency. Discussions cover crucial aspects such as battery aging, data-driven health measurement, and the model’s versatility in handling accidental effects during operation.

    This webinar will focus on the following key topics:

    • Unveiling Battery Aging: identifying key aging features
    • Data-Driven Insights: machine learning for battery state of health assessment
    • Cycle Life Precision: machine learning in Lithium-Ion battery predictions
    • Addressing Data Gaps: synthetic data for enhanced prediction accuracy
    • Real-World Impact: practical deployment of ML on battery management systems

    Presenter
    Meghana Sudarshan – Ph.D. Candidate at Purdue University

    Meghana Sudarshan is currently pursuing a Ph.D. from the School of Aeronautics and Astronautics at Purdue University. Her research focuses on developing data-driven models agnostic battery management systems in UAVs and electric vehicles for predicting degradation of COTS (Commercial Off-The-Shelf) Li-ion Batteries as a function of operation parameters.

    Buy Now
  • Placeholder

    IP Landscape, Strategies & Protection for Li-Ion Battery Solid-State Electrolytes and Silicon-Based Anodes

    The audience will learn about recent key inventions in the areas of solid electrolytes and silicon anodes for Li-ion batteries that constitute the state of the art. Exemplified by a look at two new-comers (startups) and two incumbents, attendees will further learn about how to approach IP strategy & protection for their R&D programs.

    This webinar will focus on the following key topics:

    • IP landscape, strategies & protection
    • Solid-state electrolytes for Li-ion batteries
    • Silicon-based anodes

    Presenters
    Howard Lim – Associate Attorney, Fenwick & West LLP
    Pirmin Ulmann – Co-Founder & CEO, B-Science.net

    Howard represents technology-based clients in patent litigation matters and postgrant proceedings, such as inter partes reviews. He has technical experience in the area of lithium-ion batteries, electric vehicles, semiconductors, semiconductor manufacturing equipment, and LCD and OLED display technologies. Prior to becoming a lawyer, Howard had a substantial career in the lithium-ion battery industry working for Panasonic and Sanyo Electric Company developing new products in the areas of electric vehicle and energy storage technologies.

    Pirmin is co-founder and CEO of b-science.net, a battery innovation & patent monitoring service that is based on a novel machine learning approach. He obtained a diploma in chemistry from ETH Zurich (Switzerland) in 2004 and a PhD from Northwestern University (USA) in 2009. Thereafter, he was a JSPS Foreign Fellow at the University of Tokyo (Japan). From 2010 to 2016, while working at a major battery materials manufacturer in Switzerland, he was a coinventor of 7 patent families related to lithium-ion batteries. He holds the credential Stanford Certified Project Manager (SCPM) and has co-authored scientific publications with more than 1,600 citations.

    Buy Now
  • Placeholder

    Next-Generation Batteries in Korea – Key Players and Legal Issues

    Korean battery companies are among the world’s leaders in the field of lithium-ion batteries. However, whether these companies can maintain their leadership with next-generation batteries (such as solid state batteries) is currently unclear. We analyze the patent portfolios of the major Korean battery players to better understand what next-generation battery technologies they may be developing, and draw some conclusions regarding which players and technologies may be best placed to succeed. We also look at various legal and regulatory issues that are critical to understand when working with Korean companies and employees, particularly in view of new and proposed Korean regulations aimed at preventing leakage of cutting-edge battery technology to foreign companies.

    This webinar will focus on the following key topics:

    • Review of major Korean battery market players (Samsung SDI, LG Energy Solution, SK Innovations)
    • Analysis of solid state battery patents with focus on Korean players
    • Potential winners in the next-generation battery market
    • Legal issues in working with Korean battery companies or employees

    Presenters
    Inchan Andrew Kwon – Foreign Attorney at Kim & Chang
    Sung-Eun Kim – Patent Attorney at Kim & Chang

    Inchan Andrew Kwon is a US-trained and licensed patent attorney who advises technology, chemical, pharmaceutical and biotech clients regarding patent prosecution and patent disputes in Korea, as well as related legal issues including trade secrets, licensing, regulatory compliance, and international trade.

    Sung-Eun Kim has been involved in evaluating intellectual property protection and in providing strategic advice to clients, specializing in the areas of materials for electronics, such as secondary batteries and OLED materials, polymer science, and fiber science.

    Buy Now