Showing 45–48 of 48 results

  • Placeholder

    XRF Analysis in Process Control of Battery Cathode Manufacturing

    To optimize the chemical composition of the final cathode materials, it is first essential to control the chemical composition of the precursor and raw materials. X-ray fluorescence (XRF) analysis, which can characterize chemical composition and impurities from just a few ppm all the way up to 100%, is the best technique for controlling this parameter.

    Specifically, XRF provides a simpler and more accurate way of measuring elemental composition than inductively coupled plasma (ICP) mass spectrometry, as it does not require any sample dilution or acid digestion.

    Malvern Panalytical specialists have developed a turn-key solution, including certified reference materials (CRMs) and calibration templates, for the analysis of both precursor and cathode material composition with the benchtop Epsilon 4 EDXRF or floor-standing Zetium WDXRF spectrometers.

    This webinar will focus on the following key topics:

    • On-line and at-line XRF analysis of solutions containing Ni, Co and Mn
    • NCM-certified reference materials for XRF calibration purposes
    • Turn-key solution for the XRF analysis of NCM precursors and cathodes

    Alexander Komelkov – XRF Application Specialist at Malvern Panalytical

    Back in 1996 Alexander obtained a diploma of Engineer-Physicist followed by Master of Science degree in Physics in 2000. Then he worked in a metallurgical and a mining industries as a chemical analysist and R&D specialist.

    In 2008 Alexander joined (Malvern) Panalytical as an Application Specialist for X-Ray Fluorescence analysis. Currently, Alexander provides XRF expertise consultancy to customers, develops advanced XRF applications and solutions, participates in XRF R&D projects. The main areas of expertise are geological and mining applications, as well as borate fusion for XRF analysis. He is co-creator of the methodology for combined WD/ED XRF analysis.

    Malvern Panalytical is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Solid-State Batteries – The Key Enabling Technology in Advanced Electric Vehicles

    The ‘EV Everywhere Grand Challenge’ has led to extensive research and development of battery technologies with high energy density. To date, state-of-the-art Li-ion batteries (SOA LIBs) based on alkali metal ion intercalation cathodes and anodes have been widely adopted in plug-in hybrid and niche high performance electric vehicles. However, concern with the ultimate limits of SOA LIBs related to their energy density, weight and safety suggests the need for alternatives over the long term. Solid-state batteries (SSBs) have been recognized as an ideal solution that can enable energy densities beyond those of SOA LIBs by utilizing Li metal anode and high voltage cathode, while delivering long cycle life and improved safety. As the key component of SSB, solid-state electrolyte (SSE) replaces the porous separator/ liquid electrolyte to act as a physical barrier and mechanically suppress the formation and penetration of Li dendrites. However, successful development and commercialization of SSBs requires fundamental research related to enhancing the SSE ionic conductivity, stabilizing the     electrolyte/ electrode interfaces, cell and pack manufacturing methods, development of battery management systems, and efficient battery pack designs. In this webinar, the practices and principles that have been proposed for dealing with core problems related to SSBs as well as future research avenues that will encourage the adoption of SSBs in real application will be discussed.

    This webinar will focus on the following key topics:

    • The microstructure role and SSE composition on the Li+ conduction behavior
    • Design and development of an effective electrode-electrolyte interface in SSBs
    • Mechanistic origins of Li dendrite growth in SSEs and approaches to mitigate the dendrite penetration
    • Manufacturing challenges related to mass production of SSBs

    Asma Sharafi – Research Engineer at Ford Motor Company

    Asma Sharafi is a Research Engineer working in Electrification Subsystem and Power Supply Department at Ford Motor Company. Prior to joining Ford, she completed her Ph.D. at the University of Michigan in Mechanical Engineering. Her primary focus is development of pioneering strategies to improve the durability and increase the energy density of batteries for their implementation in electric vehicles.

    Buy Now
  • Placeholder

    Detailed Approaches for Post-Mortem Analysis of Lithium Ion Batteries

    Performance degradation of Lithium Ion Batteries (LIBs) is an important problem not only battery users, but also for battery manufacturers and material suppliers. In this webinar, we will present two topics related to the Post-Mortem analysis of LIBs – one is the performance degradation of SiO anode, and the other is a detailed procedure for the quantitative analysis of electrolyte decomposition and SEI formation on graphite negative electrode.

    Toray Research Center can provide detailed and comprehensive data analysis of chemical and morphological changes, using latest instruments, to support material and product performance improvements. Customers can utilize the data set to investigate what may have happened inside the battery, and can correlate the performance degradation with that data analysis.

    This webinar will focus on the following key topics:

    • Lithium Ion battery
    • Post-Mortem analysis
    • SiO anode
    • Electrolyte degradation and SEI formation
    • Morphological observation and Composition analysis

    Yasuhito Aoki – Researcher at Toray Research Center

    Yasuhito Aoki is a researcher at Toray Research Center. He has been working on material analysis of battery related materials using Raman and infrared spectroscopy.

    Toray Research Center, Inc. is a proud sponsor of this event.

    Buy Now
  • Placeholder

    Manufacturing Analytics to Improve Battery Quality and Accelerate Factory Ramp

    The battery industry is racing to develop new manufacturing capacity as the EV and energy storage industries continue to outpace market expectations. Companies across the battery ecosystem have begun building new factories while facing the reality of long yield ramp times, supply chain immaturity, and a shortage of expertise — the typical gigafactory will take several years & billions in investment before reaching profitability.

    In this webinar, we’ll review the industry’s first software solution that enables battery manufacturers to rapidly understand cell quality and the link to upstream production and materials characteristics. This insight, when paired with the ability to control and improve production quality at unprecedented speeds, helps accelerate production ramp and improve overall cell quality.

    This webinar will focus on the following key topics:

    • Challenges around battery manufacturing scale-up and quality across industries
    • Understanding parallels from the semiconductor industry
    • Accelerating production ramp and improving yield, while reducing costs
    • Leveraging AI and ML capabilities to surface quality problems ASAP
    • How a fully integrated analytics solution can speed up battery manufacturing

    Dr. Tal Sholklapper – Co-Founder & CEO at Voltaiq

    Tal has an extensive record of success as a cleantech engineer and entrepreneur. Prior to founding Voltaiq, he worked as the lead engineer on a DOE ARPA-E funded project at the CUNY Energy Institute, developing an ultra low-cost grid-scale battery. Before joining CUNY, Tal co-founded Point Source Power, a low cost fuel-cell startup based on technology he developed while at Lawrence Berkeley National Laboratory and UC Berkeley, where he also did his graduate work in Materials Science and Engineering. As a Materials Postdoctoral Fellow at LBNL, he successfully led the transfer of lab-scale technology to industry partners.

    Voltaiq is a proud sponsor of this event.

    Buy Now